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NIST

Certain commercial entities, equipment, or materials may be
identified in this document in order to describe an experimental
procedure or concept adequately.

Such identification is not intended to imply recommendation or
endorsement by the National Institute of Standards and
Technology, noris it intended to imply that the entities, materials,
or equipment are necessarily the best available for the purpose.

* Please note, unless mentioned in reference to a NIST
Publication, all information and data presented is
preliminary/in-progress and subject to change
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Data Collected by Public Safety ~isr

K‘ Calls for Service ‘= | Incidents

* Callsto “911” for emergency assistance * Collected by an agency for management

* May include calls non-emergency calls * Stored in Records Management Systems (RMS)

* Typically maintained in law enforcement » Officer reports on crimes, situations, concerns,
computer-aided dispatch systems suspects, citizen public safety issues, etc.

(% Stops, Citations, Arrests %‘ Complaints

* Proactive and reactive stop of pedestrians or
motor vehicles

Potential mistreatment by authorities

Policy, procedure, and legal violations

* May be resolved through warnings, citations, May include internal affairs investigations
summons, or physical arrests Collection process required by national law

» Data may be overlapping such as a stop and accreditation standards

followed by a citation or arrest
uﬁ”"o PSGR
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Public Safety Data De-ldentification
Use Cases

Many cities are developing algorithms to
analyze crime, fire, and health data. Developers
would like to access other localities’ data for
training, analysis, and validation.

Many public safety agencies are required to
report certain data. Others wish to share data
with the public and researchers.
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Transparency vs. Privacy

Risks
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Personally Identifiable Information

“Pllis any information about an individual maintained by an agency, including
(1) any information that can be used to or an individual’s
identity, such as name, social security number, date and place of birth,
mother‘s maiden name, or biometric records; and (2) any other information
thatis or to an individual, such as medical, educational,
financial, and employment information.”

- NIST Special Publication 800-122 Guide to Protecting the Confidentiality of Personally Identifiable Information (PII)
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Personally Identifiable Information Risk

Low Mod
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Approaches to

Redact

Eliminate sensitive data

Anonymize
Mask sensitive data

K-Anonymization
Change the individual data, but maintain
statistical relevancy of the overall data set

Differential Privacy
Modify data sets so they no longer link to individual

responses
®, o C
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Attacks on Privacy:

'Datais a fingerprint': why you aren't
anonymous as you think online

d ‘anonymous’ data can be easily used to identify
ing from our medical records to purchase histories

Keeping Secrets: Anonymous Data Isn’t
Always Anonymous

March 12, 2014 by datascience@berkeley Staff

12.10.18
Sorry, your data can still be identified even
if i’s anonymized

Urban planners and researchers at MIT found that it's shockingly easy to

“reidentify” the anonymous data that people generate all day, every day in
cities
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"Anonymized” data really isn’t—and
here’s why not

Companies continue to store and sometimes release vast databases of " ...

NATE ANDERSON - 9/8/2009, 7:25 AM




De-anonymization
New York Taxi Data

*“Using a simulation of the medallion
data, we show that our attack can re-
identify over 91% of the taxis that ply
in NYC even when using a perfect
pseudonymization of medallion
numbers.”

*Douriez, Marie, et al. "Anonymizing
nyc taxi data: Does it matter?." 2016
IEEE international conference on data
science and advanced analytics
(DSAA). IEEE, 2016.

New York taxi details can be extracted
from anonymised data, researchers say

Fol request reveals data on 173m individual trips in US city - but
could yield more details, such as drivers' addresses and income

A Data about New York city taxi drivers and rides could be de-anonymised, researchers warn. Photograph: Ja

Alex Hern
¥ @alexhern



Formal Privacy Differential Privacy Guarantee

“Differential Privacy is a standard that protects privacy no
matter what third-party data is available. It does so by
strictly limiting what it is possible to learn about any
individual in the data set.”
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Formal Privacy Differential Privacy Tutorial

Synthetic
Data Gen.




PSCR Differential Privacy Challenges:
2018 Differential Privacy Synthetic Data Challenge

Parameters and
Privacy Noise

# Synthetic Data
Generator

Ground Truth Data Synthetic Data

Data on real Data on sanitized
individuals individuals

2% O
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2020: Temporal Data

2018: Synthetic Data » 2020: Map Data

* Time Series Synthetic

* Generated synthetic . Generated synthetic Maps
FAeE (ke ole Analytics and Pll data « Applications: Situational
Information (PIl) data . )
Map/Geographical awareness, planning,
* Tabular data data model training and

prediction



Privatizing Temporal Map Data

This challenge will follow the success of DEID1 by analyzing differential privacy
models tailored to share spatial (e.g. map) and temporal data (changes over time).

2019-20 Influenza Season Week 44 ending Nov 02, 2019 2019-20 Influenza Season Week 46 ending Nov 16, 2019 2019-20 Influenza Season Week 48 ending Nov 30, 2019

- FluView, CDC
PSCR
OPEN
INNOVATION

Solving the Public Safety needs o

Safety needs of
18




Privatizing Temporal Map Data

Synthetic map data Time sequences increase
requires quality results 02 the data space, and the
across the entire map. difficulty exponentially.

Judging Maps Map Diversity Adding Sequences

0 1 Dense urban, sparse rural,

and other variations 03

require flexible algorithms.

Technical Challenges
19 e PSCR



Privatizing Temporal Map Data
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Technical Challenges
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Privatizing Temporal Map Data

Problem size and
complexity increase
with amount of
information shared
and number of map
locations

Problem size and
complexity increase
exponentially with
number of time steps
(per individual).

Flu Vaccine

No Vaccine

Technical Challenges
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2020 Differential Privacy Temporal Map Challenge

1 October 2020 launch date

Three contests:

o Data de-identification algorithm challenge

o Metric challenge for scoring algorithm accuracy
o Open Source and Development Contest
Multi-phase challenge

Up to $300,000 in prize money

Visit: www.nist.gov/ctl/pscr/open-innovation-prize-challenges
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DISCLAIMER

The following slides, 24 to 30 are presented by a guest speaker
and presented for publication in the National Institute of
Standards and Technology’s PSCR 2020: The Digital Experience.
The contents of this presentation do not necessarily reflect the
views or policies of the National Institute of Standards and
Technology or the U.S. Government

Posted with Permission.
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PSO Systems FIRE DATA LAB
TRANSPORT

1. Direct Post
2. Open-source Data
Shipping App

. Data-Runner

Customer’s
CAD/AVL

Optional
Mapping

Customer’s
RMS

* Key and Secret
* Host-based

json | csv | xml
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AMBIGUOUS NFIRS CLASSIFICATIONS
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Visualization

Chosen Department:

Department D

Most similar department

by clustering:

Department ]
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Potential Impacts: Cris

Intervention
Analysis

Granular Cohorts

Defined value of

service Research Access FI R E L AB
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